11,177 research outputs found

    Applications of nanostructured materials and biomolecules for electrocatalysis and biosensors

    Get PDF
    Electronically conducting polymers are important materials, and composites of these materials with metal nanoparticles have also been drawn significant research attention in recent years. We prepared a highly stable Agnano-Poly (3, 4-ethylenedioxythiophene) (PEDOT) nanocomposite by one-pot synthesis method. Here, 3, 4-ethylenedioxythiophene (EDOT) is used as the reductant and polystyrene sulfonate (PSS-) as a dopant for PEDOT as well as particle stabilizer for silver nanoparticles (AgNPs). Agnano–PEDOT/PSS-nanocomposite was characterized by infrared (IR) spectroscopy, transmission electron microscopy (TEM). AgNPs are distributed uniformly around PEDOT polymer with an average particle size diameter of 10–15 nm and the nanocomposite film showed catalytic activity towards 4-nitro phenol. Some types of including Ag bimetallic nanoparticles and nanostructured materials could be directly applied for the electroanalysis and biosensing applications. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2045

    Rapidity resummation for BB-meson wave functions

    Full text link
    Transverse-momentum dependent (TMD) hadronic wave functions develop light-cone divergences under QCD corrections, which are commonly regularized by the rapidity ζ\zeta of gauge vector defining the non-light-like Wilson lines. The yielding rapidity logarithms from infrared enhancement need to be resummed for both hadronic wave functions and short-distance functions, to achieve scheme-independent calculations of physical quantities. We briefly review the recent progress on the rapidity resummation for BB-meson wave functions which are the key ingredients of TMD factorization formulae for radiative-leptonic, semi-leptonic and non-leptonic BB-meson decays. The crucial observation is that rapidity resummation induces a strong suppression of BB-meson wave functions at small light-quark momentum, strengthening the applicability of TMD factorization in exclusive BB-meson decays. The phenomenological consequence of rapidity-resummation improved BB-meson wave functions is further discussed in the context of BπB \to \pi transition form factors at large hadronic recoil.Comment: 6 pages, 2 figures, Conference proceedings for the workshop of QCD@work, Giovinazzo (Italy), June 16-19, 201

    Ordered valence bond states in symmetric two-dimensional spin-orbital systems

    Get PDF
    We consider a superexchange Hamiltonian, H=(2SiSj12)(2TiTj12)H=-\sum_{}(2{\bf S}_i\cdot {\bf S}_j-\frac 12)(2{\bf T}_i\cdot {\bf T}_j-\frac 12), which describes systems with orbital degeneracy and strong electron-phonon coupling in the limit of large on-site repulsion. In an SU(4) Schwinger boson representation, a reduced spin-orbital interaction is derived {\it exactly}, and a mean field theory has been developed by introducing a symmetric valence bond pairing order parameter. In one dimension, a spin-orbital liquid state with a finite gap is obtained. On a two-dimensional square lattice a novel type of spin-orbital ferromagnetically ordered state appears, while spin and orbital are antiferromagnetic. Moreover, an important relation has been found, relating the spin and orbital correlation functions to the combined spin-orbital ones.Comment: four pages in Revtex, no figures, accepted for publication in Physical Review Letter

    QCD corrections to BπB \to \pi form factors from light-cone sum rules

    Get PDF
    We compute perturbative corrections to BπB \to \pi form factors from QCD light-cone sum rules with BB-meson distribution amplitudes. Applying the method of regions we demonstrate factorization of the vacuum-to-BB-meson correlation function defined with an interpolating current for pion, at one-loop level, explicitly in the heavy quark limit. The short-distance functions in the factorization formulae of the correlation function involves both hard and hard-collinear scales; and these functions can be further factorized into hard coefficients by integrating out the hard fluctuations and jet functions encoding the hard-collinear information. Resummation of large logarithms in the short-distance functions is then achieved via the standard renormalization-group approach. We further show that structures of the factorization formulae for fBπ+(q2)f_{B \pi}^{+}(q^2) and fBπ0(q2)f_{B \pi}^{0}(q^2) at large hadronic recoil from QCD light-cone sum rules match that derived in QCD factorization. In particular, we perform an exploratory phenomenological analysis of BπB \to \pi form factors, paying attention to various sources of perturbative and systematic uncertainties, and extract Vub=(3.050.38+0.54th.±0.09exp.)×103|V_{ub}|= \left(3.05^{+0.54}_{-0.38} |_{\rm th.} \pm 0.09 |_{\rm exp.}\right) \times 10^{-3} with the inverse moment of the BB-meson distribution amplitude ϕB+(ω)\phi_B^{+}(\omega) determined by reproducing fBπ+(q2=0)f_{B \pi}^{+}(q^2=0) obtained from the light-cone sum rules with π\pi distribution amplitudes. Furthermore, we present the invariant-mass distributions of the lepton pair for BπνB \to \pi \ell \nu_{\ell} (=μ,τ\ell= \mu \,, \tau) in the whole kinematic region. Finally, we discuss non-valence Fock state contributions to the BπB \to \pi form factors fBπ+(q2)f_{B \pi}^{+}(q^2) and fBπ0(q2)f_{B \pi}^{0}(q^2) in brief.Comment: 44 pages, 12 figure
    corecore